COURSE OUTLINE

SULTAN QABOOS UNIVERSITY

COLLEGE OF SCIENCE

BACHELOR OF SCIENCE IN COMPUTER SCIENCE

DISTRIBUTED SYSTEMS

I. COURSE INFORMATION				
COURSE CODE	COMP5504			
COURSE TITLE	DISTRIBUTED SYSTEMS			
OMAN QUALIFICATION	8			
FRAMEWORK (OQF) LEVEL	o			
CREDIT HOURS	3			
CONTACT HOURS	3			
PRE-REQUISITES	COMP4506			
CO-REQUISITES	None			
EQUIVALENT COURSES	None	None		
INCOMPATIBLE COURSES	NONE			
COURSE CATEGORY	Specialization Requirement			
COURSE OWNER	College: Science	Department: Computer Science		
DELIVERY MODE	Face to Face			
COURSE TYPE	Lecture/Tutorial			
LANGUAGE OF INSTRUCTION	English			
	This course introduces students	s to key principles and techniques		
	underlying the development of di	stributed computing systems. Topics		
	include inter-process communication, remote invocation, distributed			
COURSE DESCRIPTION	naming, distributed file systems, security, distributed clocks, process			
	coordination, concurrency control, replication and fault-tolerance.			
	Examples of systems discussed include cloud computing, grid			
	computing, storage systems, peer-to-peer networks and Web services			

		Problem-B	ased Learning		
TEACHING AND LEARNING Strategies		Project-Based Learning			
		Team-Based Learning			
			ed Learning		
		In-term exa	amination(s) (25%)		
ASSESSMENT COMPONEN			assignments (15%)		
WEIGHT		Project (209 Final exam	ination (40%)		
TEXTBOOKS AND EDUCAT	FIONAL		istributed Systems, Maarten Van Steen and Andrew m, 4th edition, Version 4.03 (January 2025).		
MATERIAL	-	Book 2: D	istributed Systems, Concepts and Design, G. Coulouris, J. , T. Kindberg and G. Blair, Pearson (5th edition., 2012).		
Textbooks Web Sites: Book1:	https://www.di		stems.net/index.php/books/ds4/; Book 2: www.cdk5.net		
Socket Interfaces: https://docs	.oracle.com/cd/	E19683-01/	806-4125/6jd7pe6bt/index.html		
Sun RPC Tutorial: https://docs	s.oracle.com/cd/	/E19683-01	/816-1435/rpcgenpguide-21470/index.html		
Java RMI Tutorial: https://doc	s.oracle.com/ja	vase/tutoria	/rmi/index.html		
MPI Tutorial: <u>https://computir</u>	ng.llnl.gov/tutor	rials/mpi/			
Pthreads Tutorial: https://com	puting.llnl.gov/	tutorials/pth	reads/		
OpenMP Tutorial: https://com	puting.llnl.gov/	tutorials/op	enMP		
CUDA Tutorial: https://www.	CUDA Tutorial: https://www.tutorialspoint.com/cuda/index.htm				
CUDA Documentation: https	://docs.nvidia.co	om/cuda/			
Hadoop Tutorial: <u>https://www</u>	Hadoop Tutorial: https://www.tutorialspoint.com/hadoop/index.htm				
Spark Tutorial: https://www.tu	torialspoint.com	m/apache sj	park/index.htm		
Cloud Computing Tutorial: htt	t <u>ps://www.tutor</u>	ialspoint.co	m/cloud_computing/index.htm		
GRADING METHOD		X A-F Sca	$\square Pass/Not Pass \qquad \square Other (specify):$		
GRADING METHOD DESC	RIPTION				
	Range	Letter Grade	Description		
	90 - 100	А	Exceptional performance: All course objectives achieved		
	86 - 89.9	A-	and met in a consistently outstanding manner.		
	81-85.9	B+	Very Good Performance: The majority of the course		
	77 – 80.9	В	objectives achieved (majority being at least two-thirds)		
A-F GRADING SCALE:	73 – 76.9	B-	and met in a consistently thorough manner.		
	68 – 72.9	C+	Satisfactory Performance: At least most of the course		
	64 - 67.9	C	objectives achieved and met satisfactorily.		
	60 - 63.9	C-	Additional Associately De Colombia		
	55 - 59.9	D+	Minimally Acceptable Performance: The course objectives met at a minimally acceptable level.		
	50 – 54.9	D	Unacceptable performance: The course objectives not		
	0 – 49.9	F	met at a minimally acceptable level.		

II. SEMESTER INFORMATION			
SEMESTER/YEAR	Spring 2025	SECTION(S)	10
DAY AND TIME	Sunday, Tuesday 14:15 – 16:05	VENUE(S)	E11
COURSE COORDINATOR	Khaled Day	COURSE TEAM	
COORDINATOR OFFICE	0007	OFFICE HOURS	Monday, Wednesday 11:00 – 12:00
COORDINATOR EXTENSION	2231	COORDINATOR EMAIL	kday@squ.edu.om

III. ALIGNMENT OF COURSE LEARNING OUTCOMES (CLO), PROGRAM LEARNING OUTCOMES

$(PLO), GRADUATE ATTRIBUTES\,(GA), AND \,OMAN\,QUALIFICATION\,FRAMEWORK\,(OQF)$

CHARACTERISTICS

CL	.0	PLO	SQU Graduate Attributes	OQF Characteristics
1.	Identify basic characteristics and architectural models of distributed computing systems.	SO1	А	1
2.	Identify the problems and challenges behind developing distributed computing applications.	SO1	Α	1
3.	Analyze and evaluate basic algorithms and models for distributed computing systems, including issues related to inter-process communication, time synchronization, coordination, and concurrency control.	SO2, SO6	В	2
4.	Design and implement a distributed computing application, using mechanisms such as client/server socket communication, remote procedure calls, RMI, etc.	SO2, SO6	В	2
5.	Discuss the tradeoffs for improving the performance and reliability of distributed computing applications.	SO2	В	2
6.	Investigate the trends and problems of current distributed systems.	SO1	В	2

IV. COURSE LEARNING OUTCOMES (CLOS) AND ASSESSMENT CRITERIA AND METHODS

CLC	CLO1: Identify basic characteristics and models of distributed computing systems.			
ASSESSMENT CRITERIA		ASSESSMENT METHODS		
A)	Identify basic characteristics of distributed systems.	Homework, Midterm Exam, Final Exam		
B)	Identify basic models of distributed systems.	Homework, Midterm Exam, Final Exam		
CLC	D2: Identify the problems and challenges behind developing	g distributed computing applications.		
ASSESSMENT CRITERIA		ASSESSMENT METHODS		
A)	Identify the issues to address when developing distributed computing applications.	Homework, Midterm Exam, Final Exam		
B)	B) Identify the challenges faced when addressing these Homework, Midterm Exam, Final Exam issues.			
CLO3: Analyze and evaluate basic algorithms and models for distributed computing systems, including issues related to inter-process communication, time synchronization, coordination, and concurrency control.				
ASSESSMENT CRITERIA		ASSESSMENT METHODS		

11001		
A)	Analyze and evaluate basic algorithms and models for distributed inter-process communication.	Homework, Midterm, Final
B)	Analyze and evaluate basic algorithms and models for distributed time synchronization.	Homework, Midterm, Final
C)	Analyze and evaluate basic algorithms and models for distributed process coordination.	Homework, Midterm, Final
D)	Analyze and evaluate basic algorithms and models for concurrency control.	Homework, Midterm, Final
~ ~ ~		

CLO4: Design and implement a distributed computing application, using mechanisms such as client/server socket communication, remote procedure calls, or RMI.

ASSI	ESSMENT CRITERIA	ASSESSMENT METHODS			
A)	Design a distributed computing application using mechanisms such as client/server socket communication, remote procedure calls, or RMI.	Homework, Project, Midterm, Final			
B)	Implement a distributed computing application using mechanisms such as client/server socket communication, remote procedure calls, or RMI.	Homework, Project, Midterm, Final			
CLO	5: Discuss the tradeoffs for improving the performance and	reliability of distributed computing applications.			
ASSI	ESSMENT CRITERIA	ASSESSMENT METHODS			
A)	Discuss the tradeoffs for improving the performance of distributed computing applications.	Homework, Midterm, Final			
B)	Discuss the tradeoffs for improving the reliability of distributed computing applications	Homework, Midterm, Final			
CLC	CLO6: Investigate the trends and problems of current distributed systems.				
ASSI	ESSMENT CRITERIA	ASSESSMENT METHODS			
A)	Investigate the trends of current distributed systems.	Homework, Midterm, Final			
B)	Investigate the problems of current distributed systems.	Homework, Midterm, Final			

WEEK	LECTURES #	TOPICS/ SUBJECTS	READINGS/ CHAPTERS	REMARKS (e.g., ASSESSMENTS)	
	4 10	Characteristics and	Chap 1-2 (Book 1)		
1	1 and 2	Architectures of Distributed Systems	Chap 1-2 (Book 2)	HWK 1, Midterm, Final	
2	1 and 2	Characteristics and	Chap 1-2 (Book 1)	HWK 1 Midtorm Final	
2		Architectures of Distributed Systems	Chap 1-2 (Book 2)	HWK 1, Midterm, Final	
3	1 and 2	Processes, Threads, Clients	Chap 3 (Book 1)	HWK 1, Midterm, Final	
0	1 unu 2	and Servers	Sec 7.4 (Book 2)		
4	1 and 2	Inter-process	Chap 4 (Book 1)	HWK 1, Midterm, Final	
-	1 unu 2	Communication	Chap 4 (Book 2)		
5	1 and 2	Inter-process	Chap 4 (Book 1)	HWK 1, Midterm, Final	
5	1 and 2	Communication	Chap 4 (Book 2)		
6	1 and 2		Chap 4 (Book 1)	HWK 2, Midterm, Final	
U		Remote Invocation	Chap 5 (Book 2)		
7	1 and 2		Chap 4 (Book 1)	HWK 2, Midterm, Final	
/	1 anu 2	1 and 2 Remote Invocation	Chap 5 (Book 2)		
8	1 and 2	Review for Midterm Exam			
0	1 and 2	Midterm Exam			
9	1 and 2	Clock Synchronization and	Sec 5.1-2 (Book 1)	HWK 2, Final	
,	1 and 2	Logical Clocks	Chap 14.1-4 (Book 2)	11 W K 2, 1 mai	
10	1 and 2		Sec 5.3-4 (Book 1)	HWK 2, Final	
10	1 4110 2	Coordination and Agreement	Chap 15.1-3 (Book 2)	11 W IX 2, 1 IIIai	
11	1 and 2		Sec 5.3-4 (Book 1)	HWK 2, Final	
11	1 4110 2	Coordination and Agreement	Chap 15.1-3 (Book 2)	11 W IX 2, 1 IIIai	
12	2 1 and 2 Dis	1 and 2 Distributed Naming	Chap 6 (Book 1)	HWK 2, Final	
14			Chap 13 (Book 2)	11 w K 2, 1 mai	
13	1 and 2 Consistency and Replication		Chap 7 (Book 1)	HWK 2, Final	
13		Consistency and Replication	Chap 17-19 (Book 2)	11 W IX 2, 1'lliai	
14	1 and 2		Chap 8 (Book 1)	HWK 2, Final	
14	1 and 2	Fault Tolerance	Sec 18.3 (Book 2)	11 W IX 2, 1'llial	
15	1 and 2	Project Presentations		Project	

VI. ADDITIONAL INFORMATION (e.g., RUBRICS, etc.)

Project (groups of 4 students each):

Task 1 – Proposal (by week 4): Read about different communication methods and tools used in distributed systems such as Sockets, RPC, RMI, MPI, OpenMP, etc. (see provided links on page 2). Propose a distributed application and select a communication method/tool (Sockets, RPC, RMI, MPI, etc.) to use for implementing your proposed application. Examples of applications: distributed file sharing, distributed chatting, distributed task queue, etc. You may also opt to develop a parallel computing solution for a high-performance computing problem. Submit a proposal indicating the proposed application and the selected communication method/tool and get instructor approval.

Task 2 – Progress Report (by week 9): Design a solution for the selected application. Submit a progress report that includes the following sections: (1) Abstract; (2) Background Information (providing background information about the selected application and the communication method/tool); (3) Design (use pseudo-code, charts, and figures in addition to text to describe your solution design); References.

Task 3 – Implementation (by week 13): Implement and test your designed solution.

Task 4 – Final Report (by week 14): Submit a project final report extending the project progress report by adding the following sections: (4) Implementation; (6) Conclusion; (7) References; and (8) Appendix containing a copy of all your source code plus screenshots of complete testing runs.

Task 5 – Presentation (in week 15): Give a 20-minute PowerPoint presentation describing your project work.

Assessment Plan

	Date Out	Due Date	Weight
HW1	W4	W7	7.5%
Midterm Exam		W8	25%
Project Progress Report		W9	5%
HW2	W9	W12	7.5%
Project Final Report		W14	10%
Project Presentation		W15	5%
Final Exam	Sunday 25 May 2025	5-8:00-11:00	40%

Department's Late Submission Policy:

(a) 1-24 hours: 25% of the mark will be deducted.

(b) > 24 hours: Not accepted.

Department's Policy for Dealing with Cheating:

It is essential that each student solves all programming assignments, lab tests and exams individually unless instructed otherwise, e.g., for group projects. Copying, plagiarism, collusion, switching, and falsification are violations of the university academic regulations. Students involved in such acts will be severely penalized. The department has adopted a firm policy on this issue. A zero mark will be assigned the first time a student is caught involved in copying and his/her name will be added to a watch list maintained by the Head of Department. Further repeated involvements in copying will cause the student to get an F grade in that course. This is in line with the university academic regulations.

VII. STUDENTS RESPONSIBILITIES

It is the student's responsibility to know and comply with all University Academic Regulations relevant to participation in this course. These regulations specifically include attendance requirements and student academic code of conduct.

ACADEMIC	The University expects the students to approach their academic endeavors with the	
INTEGRITY	highest academic integrity. Please refer to the Undergraduate Academic	
	Regulations.	
ADD AND DROP	Students who wish to drop or add the course should review the Undergraduate	
	Academic Regulations.	
ATTENDANCE	Sultan Qaboos University has a clear requirement for students to attend courses,	
	detailed in the Undergraduate Academic Regulations.	
ASSESSMENT	To ensure the provision of a sound and fair assessment and grading, please review	
AND GRADING	the Undergraduate Academic Regulations.	
GRADE APPEAL	Students who wish to appeal their grades should review the Undergraduate	
	Academic Regulations.	
CLASSROOM	Students are expected to dress professionally during class time as required by the	
POLICIES	University. Use of phones or any other electronic devices in the classroom during	
	class time is strictly prohibited. Unauthorized use may lead to faculty member	
	confiscation of the device for the remainder of the class. Behavior that persistently	
	or grossly interferes with classroom activities is considered disruptive behavior and	
	may be subject to disciplinary action. A student responsible for disruptive behavior	
	may be required to leave the class.	
LATE AND	Students are required to meet the course objectives by submitting coursework no	
MAKE-UP	later than the assigned due date. Students may be allowed to submit late work if	
WORK	approved by the course coordinator. Assignments submitted after the due date may	
	be penalized.	
MISSED	All quizzes, tests, clinical evaluations, and exams must be completed by the date	
EVALUATIONS	they are assigned. If a quiz, test, or exam is missed due to a documented emergency	
	situation (e.g., medical emergency, death in the immediate family), it is the student's	
	responsibility to contact the instructor.	

Course Outline Appendix

1. **PROGRAM LEARNING OUTCOMES**

SO1. Analyze a complex computing problem and to apply principles of computing and other relevant disciplines to identify solutions.

SO2. Design, implement, and evaluate a computing-based solution to meet a given set of computing requirements in the context of the program's discipline.

SO3. Communicate effectively in a variety of professional contexts.

SO4. Recognize professional responsibilities and make informed judgments in computing practice based on legal and ethical principles.

SO5. Function effectively as a member or leader of a team engaged in activities appropriate to the program's discipline.

SO6. Apply computer science theory and software development fundamentals to produce computing-based solutions.

2. SQU Graduate Attributes and Competencies for Undergraduate Studies

GRADUATE ATTRIBUTES	GRADUATE COMPETENCIES FOR UNDERGRADUATE
	STUDIES
A. Cognitive Capabilities: The graduate has sufficient general and specialized theoretical knowledge that enables him/her to deal well with his/her specialty and other related fields.	 Demonstrates familiarity and works with advanced specialized knowledge in the area of specialization. Demonstrates a general understanding of the relationship of advanced specialized knowledge with knowledge in other relevant professional fields and aspects. Demonstrates a comprehensive understanding of the theories, principles, and methods used in his/her specialty, and how to create and apply new knowledge. Demonstrates general knowledge of the legal environment and necessary relevant regulatory

	frameworks.
	5. Shows awareness of contemporary literature and
	research.
B. Skill and Professional Capability: The	1. Applies concepts, theories, and investigative
graduate has sufficient skill and practical	methods to synthesize and interpret information
experience that enables him/her to perform all	to evaluate conclusions.
tasks related to the specialization and other	2. Applies appropriate research methods and
related fields.	techniques and employs digital knowledge
	3. Evaluates and critiques information
	independently
	4. Uses cognitive and technical skills to analyze
	complex issues and develop appropriate
	solutions.
	5. Initiates new ideas or processes in the
	professional, educational or research context.
C. Effective Communication: The graduate	1. Explains, presents, and adapts information to suit
has the ability to communicate effectively with	the recipients.
others to achieve the desired results	2. Employs appropriate information and
	communication technology to collect and analyze
	information.
D. Autonomy and Leadership: The graduate	1. Performs advanced professional activities
has the ability to lead, make decisions and take	independently.
responsibility for decisions.	2. Demonstrates leadership skills.
	3. Takes professional responsibility.
	4. Assumes full accountability for the tasks and their
	output.
E. Responsibility and Commitment: The	1. Manages time and other resources assigned to
graduate appreciates the importance of	accomplishing tasks effectively and responsibly.
available resources and deals with them	2. Demonstrates effective practices when working in
	teams.

effectively and is committed to the ethics of	3. Demonstrates advanced levels of understanding
the profession and society.	of values and ethics relevant to the specialization,
	profession and local and international society and
	promotes them among others.
	4. Works within the professional, institutional, and
	specialization guiding frameworks and strategic
	plans.
	5. Interacts with community affairs positively and
	preserves national identity.
F. Development and Innovation: The	1. Demonstrates the ability to independently manage
graduate has a passion for development and	learning tasks, with an awareness of how to
innovation in the field of specialization.	develop and apply new knowledge.
	2. Utilizes specialized knowledge and skills for
	entrepreneurship.
	3. Utilizes creative and innovative skills in the field
	of specialization.

3. OQF Characteristics

- 1. Knowledge
- 2. Skills
- 3. Communication, Numeracy, and Information and Communication Technology Skills.
- 4. Autonomy and Responsibility
- 5. Employability and Values
- 6. Learning to learn